


## Partes por millón (ppm) y partes por billón (ppb)

#### **Materiales:**

Para cada grupo de estudiantes:
Probeta de 10 mL
Gradilla para tubos de ensayo
10 tubos de ensayo
Cinta adhesiva (Masking tape)
Marcadores
Pipeta o gotero
Jarra para agua
Un líquido con color intenso (puede ser colorante vegetal)

#### **Procedimiento:**

- 1. Usar la cinta adhesiva y los marcadores para identificar los tubos de ensayo con los números del 1 al 10
- 2. Echar 9 mL de agua en los tubos de ensayo del 2 al 10
- 3. Echar 10 mL del líquido con color en el tubo #1.
- 4. Recoger 1 mL de agua con la pipeta o gotero y marcar la altura del nivel del agua con el marcador. Luego de marcar el nivel del agua, vaciar la pipeta o gotero.



- 5. Llenar la pipeta o gotero hasta el nivel con 1 mL de líquido con color del tubo #1 y transferirlo al tubo #2. Agitar suavemente el tubo #2 para que el líquido se mezcle con el agua.
- 6. Llenar la pipeta o gotero con 1 mL del líquido en el tubo # 2 y transferirlo al tubo #3. Agitar suavemente el tubo #3 para que el líquido se mezcle con el agua.
- 7. Continuar este proceso con los demás tubos (del 3 al 4, del 4 al 5, etc)
- 8. Completa las razones de dilución preparadas en la tabla de datos. El tubo #1 contiene el color puro, así que la razón de dilución es una parte en 1 (1/1)



- 9. El tubo #2 contiene una parte de colorante por cada 10 partes de líquido por lo que la razón de dilución es 1/10 (10<sup>-1</sup>). Continúa con este proceso para los 10 tubos.
- 10. Convierte las diluciones a partes por millón (ppm) multiplicando la dilución (columna 2) por 10<sup>6</sup>. Esto indicará cuántas ppm por volumen hay en cada tubo.
- 11. Convierte las partes por millón (ppm) a partes por billón (ppb) multiplicando por 10<sup>3</sup>.

#### **Preguntas:**

- 1. ¿Cuál tubo contiene la mayor concentración? ¿La menor concentración?
- 2. ¿Cuál tubo tiene la razón de dilución mayor? ¿La menor razón de dilución?
- 3. ¿Qué ocurre con el color del líquido según disminuye la razón de dilución? ¿Por qué ocurre esto?
- 4. ¿Llegará el líquido a ser incoloro? Si es así, ¿a qué razón de dilución será incoloro?
- 5. ¿Cuál tubo contiene una ppm/volumen de colorante? ¿Cuál contiene una ppb/volumen?
- 6. El ozono en la estratosfera tiene una razón de dilución de 1 a 10 ppm/volumen. ¿Cuáles tubos representan esa razón de dilución?
- 7. Una razón de dilución típica para el ozono en la troposfera es de 10 a 100 ppb/volumen. ¿Cuáles tubos representan esta razón de dilución?
- 8. Utiliza la tabla de las razones de dilución de los gases que componen la atmosfera para determinar si algunas de esas razones son similares a las que se hicieron en los tubos de ensayo. Escribe el nombre del gas y la razón de dilución que es similar.



### Tabla #1. Diluciones en ppm y ppb

| Tubo | Partes por volumen | Partes por millón/volumen<br>(ppm/v) | Partes por billón/ volumen<br>(ppb/v) |
|------|--------------------|--------------------------------------|---------------------------------------|
| 1    |                    |                                      |                                       |
| 2    |                    |                                      |                                       |
| 3    |                    |                                      |                                       |
| 4    |                    |                                      |                                       |
| 5    |                    |                                      |                                       |
| 6    |                    |                                      |                                       |
| 7    |                    |                                      |                                       |
| 8    |                    |                                      |                                       |
| 9    |                    |                                      |                                       |
| 10   |                    |                                      |                                       |



### Tabla 2. Gases en la atmosfera

| Gases                                     | Concentración                                    |  |
|-------------------------------------------|--------------------------------------------------|--|
| Nitrógeno (№2)                            | 78.08% por volumen (equivalente a 780,800 ppm/v) |  |
| Oxígeno ( $\bigcirc_2$ )                  | 20.95% por volumen (209,500 ppm/v)               |  |
| Argón (Ar)                                | 0.93% por volumen (9,300 ppm/v)                  |  |
| Vapor de agua ( $H_2$ O)                  | 0 to 1 or 2% por volumen (hasta 20,000 ppm/v)    |  |
| Bióxido de carbono (CO₂)                  | 365 ppm/v                                        |  |
| Hidrógeno (H <sub>2</sub> )               | 500 ppb/v                                        |  |
| Helio (He)                                | 524 ppb/v                                        |  |
| Neón (Ne)                                 | 1818 ppm/v                                       |  |
| Ozono (○₃) en la troposfera               | 0.02 to 0.1 ppm/v                                |  |
| Ozono (○₃) en la estratosfera             | 0.1 to 10 ppm/v                                  |  |
| Metano (CH4)                              | 1.7 ppm/v                                        |  |
| Óxido de nitrógeno (№20)                  | 0.31 ppm/v                                       |  |
| CFC-12 (CF <sub>2</sub> Cl <sub>2</sub> ) | 0.5 ppb/v                                        |  |
| CFC-11 (CFCl3)                            | 0.3 ppb/v                                        |  |